<noframes id="zd9f3">

    <address id="zd9f3"></address>

    <address id="zd9f3"></address>
    <address id="zd9f3"></address>

    <address id="zd9f3"><nobr id="zd9f3"><meter id="zd9f3"></meter></nobr></address>
    1. PI3K/Akt/mTOR
    2. mTOR


    mTOR (mammalian target of Rapamycin) is a protein that in humans is encoded by the mTOR gene. mTOR is a serine/threonine protein kinase that regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription. mTOR belongs to the phosphatidylinositol 3-kinase-related kinase protein family. mTOR integrates the input from upstream pathways, including insulin, growth factors and amino acids. mTOR also senses cellular nutrient, oxygen, and energy levels. The mTOR pathway is dysregulated in human diseases, such as diabetes, obesity, depression, and certain cancers. Rapamycin inhibits mTOR by associating with its intracellular receptor FKBP12. The FKBP12-rapamycin complex binds directly to the FKBP12-Rapamycin Binding (FRB) domain of mTOR, inhibiting its activity.

    View mTOR Pathway Map

    mTOR Isoform Specific Products:

    • mTOR

    • mTORC1

    • mTORC2

    mTOR 相关产品 (66):

    Cat. No. Product Name Effect Purity
    • HY-10219
      Rapamycin Inhibitor 99.93%
      Rapamycin (Sirolimus; AY 22989) 是一种有效且特异性的 mTOR 抑制剂,作用于 HEK293 细胞,抑制 mTORIC50 为 0.1 nM。Rapamycin 与 FKBP12 结合且抑制 mTORC1。Rapamycin 还是一种自噬 (autophagy) 激活剂。
    • HY-10218
      Everolimus Inhibitor 98.79%
      Everolimus (RAD001) 是有效的 mTOR 抑制剂,它与FKBP-12结合以产生免疫抑制复合物。
    • HY-13003
      Torin 1 Inhibitor 99.16%
      Torin 1 是一种有效的 mTOR 抑制剂,IC50 为 3 nM。Torin 1 抑制 mTORC1/2 复合物,IC50 值在 2 和 10 nM 之间。
    • HY-B0795
      MHY1485 Activator 99.05%
      MHY1485是可渗透细胞的 mTOR 活化剂。 MHY1485通过抑制自噬体和溶酶体之间的融合抑制自噬过程。
    • HY-10422
      AZD-8055 Inhibitor 98.60%
      AZD-8055 是一种ATP竞争性的 mTOR 抑制剂,IC50 为 0.8 nM。AZD-8055 抑制 mTORC1mTORC2
    • HY-N0486
      L-Leucine Activator >98.0%
      L-Leucine 是一种必需的支链氨基酸 (BCAA),可激活 mTOR 信号通路。
    • HY-114267
      Cbz-B3A Inhibitor >98.0%
      Cbz-B3A 是 mTORC1 转导的有效选择性抑制剂,与泛素1、2、4 结合,Cbz-B3A 还能抑制 eIF4E 结合蛋白的磷酸化。
    • HY-N0148A
      Rutin hydrate Activator >98.0%
      Rutin hydrate 是一种黄酮苷类化合物,能够透过血脑屏障,通过抑制 JNKERK1/2 的活化,激活 mTOR 通路来起作用。
    • HY-13328
      Sapanisertib Inhibitor 99.06%
      Sapanisertib (INK-128) 是ATP依赖性的 mTOR1/2 抑制剂,抑制mTOR激酶的IC50 值为1 nM。
    • HY-50673
      Dactolisib Inhibitor 99.13%
      Dactolisib (BEZ235) 是一种双重的 pan-class I PI3KmTOR 抑制剂,作用于 p110α/γ/δ/βmTORIC50 分别为 4 nM/5 nM/7 nM/75 nM 和 20.7 nM。Dactolisib (BEZ235) 抑制 mTORC1mTORC2
    • HY-15247
      Vistusertib Inhibitor 98.80%
      Vistusertib (AZD2014) 是一种ATP竞争性的 mTOR 抑制剂,IC50 为 2.81 nM。AZD2014 抑制 mTORC1mTORC2 复合物。
    • HY-50910
      Temsirolimus Inhibitor 99.25%
      Temsirolimus 是 mTOR 抑制剂,IC50 值为 1.76 μM。
    • HY-12513
      LY3023414 Inhibitor 99.77%
      LY3023414 有效且选择性地抑制 PI3KαPI3KβPI3KδPI3KγDNA-PK,和 mTORIC50 分别为 6.07 nM,77.6 nM,38 nM,23.8 nM,4.24 nM,和 165 nM。在低纳摩尔浓度下,LY3023414 有效抑制 mTORC1/2
    • HY-13002
      Torin 2 Inhibitor 99.93%
      Torin 2 是一种 mTOR 抑制剂,抑制细胞内 mTOR 活性,EC50 为 0.25 nM,比作用于 PI3K (EC50: 200 nM) 选择性高 800 倍。体外酶实验中,Torin 2 还抑制 DNA-PKIC50 为 0.5 nM。Torin 2 抑制 mTORC1mTORC2
    • HY-10474
      Torkinib Inhibitor
      Torkinib (PP 242) 是选择性,ATP竞争型的 mTOR 抑制剂,IC50 为 8 nM。PP242 抑制 mTORC1mTORC2IC50 分别为 30 nM 和 58 nM。
    • HY-N0109
      Salidroside Activator 98.46%
      Salidroside 是一种脯氨酰内肽酶 (prolyl endopeptidase) 抑制剂。Salidroside 可通过激活 mTOR 信号缓解肿瘤恶病质小鼠模型中的恶病质症状。
    • HY-10297
      Omipalisib Inhibitor 99.31%
      Omipalisib (GSK2126458) 是一种高选择性,有效的 PI3K 抑制剂,抑制 p110α/β/δ/γ,mTORC1/2 的活性,Ki 值分别为 0.019 nM/0.13 nM/0.024 nM/0.06 nM 和 0.18 nM/0.3 nM。
    • HY-15177
      PF-04691502 Inhibitor 99.49%
      PF-04691502是有效和选择性的 PI3KmTOR 的抑制剂。 PF-04691502与人PI3Kα,β,δ,γ和mTOR结合的 Ki 分别为1.8,2.1,1.6,1.9和16 nM。
    • HY-10423
      OSI-027 Inhibitor 98.60%
      OSI-027 是一种 ATP 竞争性的 mTOR 激酶活性抑制剂,IC50 为 4 nM。OSI-027 抑制 mTORC1mTORC2IC50 分别为 22 nM 和 65 nM。
    • HY-10115
      PI-103 Inhibitor 99.86%
      PI-103 是一种有效的 PI3K mTOR 抑制剂,抑制 p110αp110βp110δp110γmTORC1mTORC2IC50 分别为 8 nM,88 nM,48 nM,150 nM,20 nM 和 83 nM。PI-103 还抑制 DNA-PK,IC50 为 2 nM。

    The mammalian target of rapamycin (mTOR) signaling pathway integrates both intracellular and extracellular signals and serves as a central regulator of cell metabolism, growth, proliferation and survival[1]. mTOR is the catalytic subunit of two distinct complexes called mTORC1 and mTORC2. mTORC1 comprises DEPTOR, PRAS40, RAPTOR, mLST8, mTOR, whereas mTORC2 comprises DEPTOR, mLST8, PROTOR, RICTOR, mSIN1, mTOR[2]. Rapamycin binds to FKBP12 and inhibits mTORC1 by disrupting the interaction between mTOR and RAPTOR. mTORC1 negatively regulates autophagy through multiple inputs, including inhibitory phosphorylation of ULK1 and TFEB. mTORC1 promotes protein synthesis through activation of the translation initiation promoter S6K and through inhibition of the inhibitory mRNA cap binding 4E-BP1, and regulates glycolysis through HIF-1α. It promotes de novo lipid synthesis through the SREBP transcription factors. mTORC2 inhibits FOXO1,3 through SGK and Akt, which can lead to increased longevity. The complex also regulates actin cytoskeleton assembly through PKC and Rho kinase[3]


    Growth factors: Growth factors can signal to mTORC1 through both PI3K-Akt and Ras-Raf-MEK-ERK axis. For example, ERK and RSK phosphorylate TSC2, and inhibit it.


    Insulin Receptor: The activated insulin receptor recruits intracellular adaptor protein IRS1. Phosphorylation of these proteins on tyrosine residues by the insulin receptor initiates the recruitment and activation of PI3K. PIP3 acts as a second messenger which promotes the phosphorylation of Akt and triggers the Akt-dependent multisite phosphorylation of TSC2. TSC is a heterotrimeric complex comprised of TSC1, TSC2, and TBC1D7, and functions as a GTPase activating protein (GAP) for the small GTPase Rheb, which directly binds and activates mTORC1. mTORC2 primarily functions as an effector of insulin/PI3K signaling. 


    Wnt: The Wnt pathway activates mTORC1. Glycogen synthase kinase 3β (GSK-3β) acts as a negative regulator of mTORC1 by phosphorylating TSC2. mTORC2 is activated by Wnt in a manner dependent on the small GTPase RAC1[4].


    Amino acids: mTORC1 senses both lysosomal and cytosolic amino acids through distinct mechanisms. Amino acids induce the movement of mTORC1 to lysosomal membranes, where the Rag proteins reside. A complex named Ragulator, interact with the Rag GTPases, recruits them to lysosomes through a mechanism dependent on the lysosomal v-ATPase, and is essential for mTORC1 activation. In turn, lysosomal recruitment enables mTORC1 to interact with GTP-bound RHEB, the end point of growth factor. Cytosolic leucine and arginine signal to mTORC1 through a distinct pathway comprised of the GATOR1 and GATOR2 complexes.    


    Stresses: mTORC1 responds to intracellular and environmental stresses that are incompatible with growth such as low ATP levels, hypoxia, or DNA damage. A reduction in cellular energy charge, for example during glucose deprivation, activates the stress responsive metabolic regulator AMPK, which inhibits mTORC1 both indirectly, through phosphorylation and activation of TSC2, as well as directly through the phosphorylation of RAPTOR. Sestrin1/2 are two transcriptional targets of p53 that are implicated in the DNA damage response, and they potently activate AMPK, thus mediating the p53-dependent suppression of mTOR activity upon DNA damage. During hypoxia, mitochondrial respiration is impaired, leading to low ATP levels and activation of AMPK. Hypoxia also affects mTORC1 in AMPK-independent ways by inducing the expression of REDD1, the protein products of which then suppress mTORC1 by promoting the assembly of TSC1-TSC2[2].



    [1]. Laplante M, et al.mTOR signaling at a glance.J Cell Sci. 2009 Oct 15;122(Pt 20):3589-94. 
    [2]. Zoncu R, et al. mTOR: from growth signal integration to cancer, diabetes and ageing.Nat Rev Mol Cell Biol. 2011 Jan;12(1):21-35. 
    [3]. Johnson SC, et al. mTOR is a key modulator of ageing and age-related disease.Nature. 2013 Jan 17;493(7432):338-45.
    [4]. Shimobayashi M, et al. Making new contacts: the mTOR network in metabolism and signalling crosstalk.Nat Rev Mol Cell Biol. 2014 Mar;15(3):155-62.

    Isoform Specific Products

    Your Search Returned No Results.

    Sorry. There is currently no product that acts on isoform together.

    Please try each isoform separately.